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Abstract. We show that the feasibility of asystem of m linear inequalities over the cone of symmetric
positive semidefinite matrices of order n can be tested in mn® MM™n*}) arithmetic operations with

[n@Mn{m.n*}) pit numbers, where [ is the maximum binary size of the input coefficients. We
aso show that any feasible system of dimension (m,n) has a solution X such that log||X]|| <

ln0(min{m,n2})_
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1. Introduction

This paper is concerned with the general semidefinite feasibility problem (F):
Given integral n x n symmetric matrices Ay, ..., A,, andintegersbs, ..., b,
determine whether there existsareal n x n symmetric matrix X such that

A X<b, i=1,...,m, X0, (1)

where A - X = tr(AX) denotes the standard inner product on the space of real
symmetric matrices and the notation (-) = O indicates that (-) is a symmetric
positive semidefinite matrix.

We aso consider the following (polynomially equivalent) problem (G):

Given integral n x n symmetric matrices Qg, Q, . . . , Q., determine whether
therearereal numberszy, ..., z,, such that

QO+X1Q1+"'+XQOtO- (2)

Thecomplexity statusof problems (F) and (G) isafundamental openissueinthe
theory of semidefinite programming. For the standard bit model of computation, it
isknown [7] that either these problems bel ong to the complexity class N PNcoN P,
or they arenotin N PUcoN P. For thereal number model of computation problems
(F) and (G) areknownto bein NP N coN P [7], but the question of whether they
can be solved in polynomial time remains open.

* Research supported by NSF grants CCR-9208371 and CCR-9208539, and ONR grant NO0014-
92-J.



352 LORANT PORKOLAB AND LEONID KHACHIYAN

We assume throughout the paper that n > 2, because for n = 1 the problems
are trivial. The results of this paper are as follows. In Section 3, we obtain upper
bounds on the norm of feasible solutions of (1) and (2). Specifically, we show that:

(i) Any feasible system (1) has a solution in the Euclidean ball B = {X|||X]|| <
R}, wherelog R = inC(Min{m.n®}) and [ is the maximum bitlength of theinput
coefficients. Moreover, the same bound appliesto (2): any feasible system (2)
has a solution x such that log ||x|| = (nC(min{m.n?}),

If the solution sets of (1) or (2) are bounded, then the above bounds hold for any
solution. In addition, we give examples of feasible systems (1) and (2) all of whose
solutions have Euclidean norm at least R, wherelog R = [2mintm.n}/2,

In Section 4, we state lower bounds on the discrepancy of infeasible systems
(1) and (2):

(i) If (1) isinfeasible, thenfor any symmetric positive semidefinite matrix X € B,
—logmax;—1._m{Ai-X —b;} = Inmin{m.n*}) The corresponding result for
an infeasible system (2) is that for any x that satisfies the upper bound of (7),
the minimum eigenvalue \,, of Qg + X1Q1 + - -+ + X, Q.. IS negative and
—log(=Ap) = InO(min{m,n?})

We also give examples of infeasible systems (1) and (2) for which the quantities
Iog maxi:l,...,m{Ai - X = bZ} and Iog(_kn(QO + XlQl +o 4+ XQO)) do not
exceed —[2min{m.n}/2,

We prove the bounds of (i) and (ii) by using some results of Renegar [9]
on decision methods for the first order theory of the reals and an analogue of
the fundamental theorem of linear inequalities for positive semidefinite matrices.
These auxiliary results are briefly reviewed in Section 2.

In Section 5, we discuss the complexity of problems (F) and (G). Due to (i)
and (ii), solving (F) with the ellipsoid method requires imn.O(Mn{m:n?}) arithmetic
operationswith [nC(Min{m:n®})_pit numbers. We usethe decision method of Renegar
[9] aong with the derandomized version [2] of Clarkson’s agorithm [3], [1] to
improve this result as follows:

(iii) Problem (F) can be solved in mnOMn{mn®}) arithmetic operations over
[nOMin{mn®})_pit numbers.

In particular, (F) can be solved in strongly polynomial time for any fixed number

of variables or constraints. Note also that for n = const, the required number of

arithmetic operations grows linearly with m.
In Section 5 we also argue that:

(iv) Problem (G) can be solved in O (mn#) 4+ nOMn{m.n®}) arithmetic operations
over [nCMmin{m.n?})_pit numbers.
This extends the earlier result of Ramana [6] that for any fixed m the strict

versionQo+X1Q1+- - -+ X, Qn, = 00f problem (G) can be solved in polynomial
time.
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Note that in the bit model of computation, each arithmetic operation with
InOmin{m.n?})_hit numbers can be replaced by nO(Minm:n*}) operations with I-bit
numbers. For this reason, the bounds on the operations stated in (iii) and (iv) also
apply to I-bit numbers.

Finally, in Section 6 we briefly discuss some extensions of (iii) and (iv) to
semidefinite optimization problems.

2. Preliminaries

In this section we introduce some notation and record afew auxiliary propositions,
which are used in Sections 3 and 5.

2.1. NOTATION

Sy, denotesthe space of symmetric n x n real matrices. Any matrix in.S,, can thus
be viewed as avector in Rz"(n+).

For apositive number R, we denote by C'r, the compact set C N {X|tr(X) < R},
where C = {X € S,|X > 0} is the cone of symmetric positive semidefinite
matrices.

A1(X) > -+ > A\ (X) arethe (real) eigenvaluesof X € S,,. Wewrite X = O if
An(X) > 0.

A formula (in the first-order theory of the reals) is an expression of the form

(SF) (QuxM e RM)...(Qux“! e R™)P(y,xH, ... xI¥],

where:
-y =(y1,...,yr) € RF arefreevariables;
—each@;,i=1,...,w, isoneof the quantifiers 3 or v,
— P(y,xl, ... xl“l) isaquantifier free Boolean formula* with r “atomic pred-
icates’ of the form

gy, XU x9N A0 i =1,

where A; isone of the “standard relations” >, <, >, <, =, #, andtheg;,"sare
real polynomials of degreeat most d > 2.

Note that the above formulaisin prenex form: all quantifiersin (SF) occur in
front. Formulas without free variables are called sentences. We say thaty € R is
asolution of (SF) if the sentence obtained by substituting y into (SF) is true.

* In this paper, al formulae will be explicitly written using the standard connectives A, Vv, and
==
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2.2. AUXILIARY PROPOSITIONS

PROPOSITION 2.1 (Renegar [8]). If aformula (S F') hasonlyinteger coefficients,
each of bit length at most B, then every connected component of the set of its
solutionsintersectsthe ball {y € R¥|||ly|| < R}, where R satisfies

logR < B(rd)>“*ILin:.

A quantifier elimination method for thefirst-order theory of the reals constructsfor
any input formula (SF) an equivalent quantifier free formula.

PROPOSITION 2.2 (Renegar [9]). Thereis an algorithm which, given a formula
(SF), finds an equivalent quantifier free formula of the form

(hij(y)Ai;0),

1
= 1

J;

i=1j

where:
1 < (ra)?”FILins,
— J; < (rd)?” R 1Lims
O (w) .
— the degree of hy;(y) < (rd)? kITini,
— A,;j isone of the standard relations >, <, >, <, =, #.

Thealgorithmreguires (rd)2°“* 11: 7 operationsand (rd)©*+22: ") evaluations
of the input formula. If the coefficients of the atomic polynomialsg;, i = 1,...,r,
are integers of bit length at most B, then the algorithm works with humbers of
binary length

(B + k) (rd)?”“ * L.

This bound also holds for the binary length of the coefficients of the polynomials
hz’j-

The following special case of the above result deals with the decision problem
for the first-order theory of the reals. determine whether a sentence (SF) istrue or
false.

PROPOSITION 2.3 (Renegar [9]). Thereisan algorithmfor the decision problem
of the first-order theory of the realsthat requires

(rd)?” kI Lim

operations and (rd)o(zi ") evaluations of the input formula. When restricted to
sentencesinvolving only polynomials with integer coefficients of bit length at most

B, the procedure works with numbers of binary length B (rd)2” ' * 117,
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The inequality below is awell-known bound on nonzero roots of univariate poly-
nomials (see, e.g. [5]).

PROPOSITION 2.4. Letp(z) = agz®+a1z% 1 +- - - +aq_1z +aq beaunivariate
polynomial with integer coefficients, and let « be a nonzero root of p(x). Then
la] > 1/(1+ h), where h = max{|ao|, |a1], ..., |aq|} iSthe height of p(z).

We shall also need the following variant of the Fundamental Theorem of Linear
Inequalities (see, e.g. [11]).

PROPOSITION 2.5. Consider a systemof linear inequalities
alx<b, ieM={1...,m},

wherea; € R, 4 € M, arenon-zerovectors, b; € R, : € M, andlet K bea convex
setinR*. If P = KN {x € R*|al'x < b;,i € M} isnot empty, then thereexists a
subset I C M such that:

(@) 1] <min{m,n},

(b)) 0AKN{xeR|ax=b, icl}CP

Finaly, for any R > 0 we have:
min{A - X| X = 0, tr(X) = R} = R\, (A), ?3)
min{A - X| X = 0, tr(X) < R} = min{0, R\, (A)}. 4
To show thefirst of these identities, observe that

min{A - X|X > 0, tr(X) = R}
= RA\p(A) + min{(A — X\ (A)l,) - X| X =0, tr(X) = R}

where the last equality follows from the fact that A — A, (A)l,, iS a symmetric
positive semidefinite matrix whose minimum eigenvalueis zero. To seethe second
identity, note that if A > 0, then min{A - X| X > 0O, tr(X) < R} = 0. Otherwise
An(A) < 0, which meansthat theminimum onthel.h.s. of (4) isnegativeand hence
it is attained at amatrix X such that tr(X) = R. Then (4) becomes a consequence
of (3).

3. Upper Boundson Feasible Solutions

THEOREM 3.1.
(i) Any feasible system (1) has a solution X such that || X|| < R, wherelog R =
InO(min{m,nZ}).
(i) Moreover, if the feasible set of (1) is bounded, then the above bound holds for
any solution of (1).
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Proof. Supposethat system (1) isfeasible, and let
Qr = {X e C|tr(X) = R},
A, = {yE]Rm|yz’ >0,i :1,...,m,§: Yy = 1},

@(R) = xrg?r}%max{Al —bl,...,Am-X—bm}.

(Recall that C' is the cone of symmetric positive semidefinite matrices of order n.)
From von Neumann’s saddlepoint theorem (see, e.g., [10]) and (3), it follows that
forany R > 0

O = i X S (A X =)

m
= max min Al - X — :b;
e i { (35 ) x-S
m m
= max Al — b; p .
yEAm { (ZX; yl l> ; yl Z}

Consider the formula

m m
=1

i=1

which can be written in the standard form (SF) asfollows:

vy € R™ HAER{Hylzo,...,ymzo,i yizl}
i=1
— [(da(iyiAi_mn> _ )
/\<R>\—gyibi gO)]}/\(RZO)}.

It iseasy to seethat for any R € R, the following statements are equivalent:

e (1) hasafeasible solutionin Qg;

e O(R) <0

e R satisfies®(R).
By our original assumption, (1) is feasible, and hence there is a non-negative R
that satisfies ®(R). Next, ®(R) isastandard formula (SF) of degreeat mostd = n
with k = 1 free variable and w = 2 quantifiers. Furthermore, ®(R) consists of

m+4= O( ) atomic polynomial inequalitiesin m + 1 = O(m) variables.

Slncedet( 1 yiA;— Aly,) containsn! productsof linear formsinm 4+ 1 variables
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with integer coefficients of height at most 2/, each coefficient in ®(R) has binary
length at most b = n(l 4 log(nm) + 1). Now from Proposition 2.1 it follows that
®(R) can be satisfied by a positive number R such that

O(m)

log R = n(l 4 log(nm) + 1)(nm)°™ = I(nm)°™. (5)

By Proposition 2.5, thereisaset I C M of size at most n(n + 1)/2 such that the
system

A;-X=b, icl, X=0

isfeasible, and any of its solutions solves the original system (1). For this reason,
we can obtain abetter bound on R by replacing m with min{m, n?}. Since ||X|| =
(37 =1 X2)Y2 < tr(X), part (i) of the theorem follows.

To show part (ii), consider the formula @'(R) = VR' € R{®(R') = (R’ <
R)}. Notethat ®'(R) can be written in prenex form as

VR €R Jy e R V)\e]R{{[ylZO,...,ymZO,Z yi:]_:|
i=1
A Kdet(Z yiAi—AIn> ;é0>
=1
v(RA—E:wm>oﬂ}vmgfngﬁ.

i=1
Itiseasy to seethat ®'(R) issatisfied if and only if
R > max{tr(X)|X feasiblefor (1)}.

Hence, we can apply Proposition 2.1 to ®'(R) to conclude that, similarly to (5),
log R = I(nm)®(™)_ It remains to show that 7n can be replaced by min{m, n?}.
Tothisend, notethat if the solution set of (1) isbounded, then there existsasystem
A;-X <bj, i€ I, X > 0withat most n(n + 1)/2 inequalities whose solution set
isstill bounded. Thisis because the solution set of (1) isbounded if and only if the
recessive coneof (1) istrivid, i.e.,

cn™, H; = {0}, (6)

where H; is the halfspace {X € Sp|A; - X < 0}. Let Q1 = {X € Sp|X =
0, tr(X) = 1}, then (6) is equivalent to the emptiness of the intersection of the
m + 1 convex sets Qq, Hy, ..., H,, C R*™t1D/2 By Helly’s theorem (see, e.g.,
[10]) there exists a system of at most 1 + n(n + 1)/2 sets from Q4, H1, ..., Hp,
whoseintersection isstill empty. Since any such system must contain €21, the claim
follows. O
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REMARK 3.2. The bounds of Theorems 3.1 apply to any mixed system of strict
and/or nonstrict inequalities

A X < b, i=1,...k
A-X < by, i=k+1,..m, )
X »=0,X>10,

where L is a linear subspace in R”, and the constraint X >=; 0 means that X is
positive definiteon L. Thisfact follows from the observation that for any ¢ € (0, 1)
and any solutions X1 and X, of systems (7) and (1), respectively, the convex
combination tX1 + (1 — ¢) X2 satisfies (7).

THEOREM 3.3.
(i) Any feasible system (2) has a solution x € R™ such that log||x|| =
an(min(m,nz)).
(i) Moreover, if the feasible set of (2) is bounded, then the above estimate holds
for any solution of (2).
Proof. We can assume without loss of generality that the input matrices
Q1,...,Qn arelinearly independent, and hence m < n(n + 1)/2. Suppose that
(2) isfeasible and consider the formula

U(R) = 3Ix € R"{(Qo + z1Q1 + - - - + ,,Qm = 0) A (IX|| € R)}
or equivalently,

Ix € R™ VA e R{[(det(Qo+ z1Q1 + -+ + 2, Qm — AL,) # 0)
V (A>0)]A (xTx < RZ)}.
U(R) is a standard formula with w = 2 quantifiersinn; = m and np, = 1
variables, respectively, which hask = 1 free variable and consists of » = 3 atomic
polynomial inequalities of degree at most d = n, whose integer coefficients have
at most B = n(l + log(nm) + 1) bits each. Hence ¥(R) can be satisfied by a
number R such that log R = [n°™). But m < n2, which implies part (i) of the
theorem.
To show part (ii), apply the above arguments to the modified formula

U'(R) =V¥x € R™{(Qo+ 2z1Q1+ -+ - + 2,Qm = 0) = (x| < R)}. O

Clearly, the bounds of Theorem 3.3 also hold for any strict and/or mixed system
2.

We close this section with examples of ill-posed feasible systems (1) and (2).

EXAMPLE 3.4. Let n be an even number. Consider n x n symmetric positive
semidefinite matrices X satisfying the system of linear equations:

Xn=1, Xp=2,
Xep =1, Xk,k+l = kal,lcfla for k= 3, 5....n—1
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It is easy to check that thisinstance of (1) isfeasible and log X, ,, > 12"/2 for any
of its solutions. A similar example for problem (2) is given below.

EXAMPLE 3.5. Given two matricesA € S,,, andB € S,,,, denote by
A 0}

A@B:{O B

their direct sum. For x = (z1,...,zy) € R, let

Q1(x) = [211 51] and Q. (x) = [ 1z

Tp—1 T

k=2,....,m.

Then Q(X) = Q1(X) ® Q2(X) ® - - Q,(x) > 0is afeasible instance of (2), any
solution of which satisfieslog z,,, > 12™.

4. Lower Boundson the Discrepancy

Let R = R(n,m,!) be the bound of Theorem 3.1, and let Cr = {X € S,|X =
0, tr(X) < R}. Thediscrepancy of (1) isthe optimal value of the convex program-
ming problem:

0* =min{O|A; - X <b;+0, ieM={L1...,m}, Xe&Cg} 8)

Notethat because of the compactnessof C'r, theminimumin (8) isalwaysattained,
and 6* < 0if and only if system (1) isfeasible.

REMARK 4.1. There exist infeasible systems (1) such that inf{0|A; - X < b; +
0,7 € M,X > 0} = 0. For instance, thisistrue for the system of linear inequalities
X11 <0, X2 < =1, where X = (X;;) isasymmetric positive semidefinite matrix
of order 2.

THEOREM 4.2. If (1) isinfeasible, then — log§* = [nOMin{mn?})

Although Theorem 4.2 can be proved analogously to Theorem 3.1, it is convenient
to postpone its proof until Section 5.

Now we consider systems (2). Let R = R(n,m,[) be the bound of Theorem
3.3, and let Up = {x € R™|||x|| < R} be the m-dimensional ball of radius R
centered at the origin. The discrepancy of (2) is the optimal value of the concave
program:

A =max{\,(Qo+ 21Q1 + -+ + Q)X = (z1,...,7m) € Ur}.  (9)
Clearly, (2) isfeasibleif and only if A* > 0.

THEOREM 4.3. I (2) isinfeasible, then — log(—A*) = [pO(min{m.n?}),
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The proof of this theorem is also postponed until Section 5. We close this section
with examples of infeasible systems (1) and (2) whose discrepancies are doubly
exponentialy small.

EXAMPLE 4.4. Letn beeven, and consider n x n symmetric positive semidefinite
matrices X satisfying the equations:

X1 —2X1p =0, Xp—2'Xa=0,

ka—xlzzo, for k:3,5,...,n—3,

ka—xk+1,k+2:0, for k=4,6,...,n—4,

Xn—2,n—2 + Xn—l,n—l = Oa Xpn — X12 = =1L
It is easy to check that thisinstance of (1) isinfeasibleand — log6* > [27/2.

EXAMPLE 4.5. For X = (1, ..., 7m) € K™, let

_ (2l 1 [z 0
Ql(x) - |z 2l$2:| ) Qm(x) - |: 0 1 — 1:| )
and
EZ T
X) = k=2... -1
Qk( ) | 2, $k+l:| ) ) ,

Then Q(X) = Q1(X) ® Q2(x) @ - - - Q. (X) > Oisaninfeasibleinstance of (2), and
it can be verified that — log(—\*) > 12m~1,

5. Complexity Bounds

By Theorems 3.1 and 4.2, the feasibility of (1) can be determined by comput-
ing the optimal value 6* of program (8) to an absolute accuracy of ¢, where
log(1/e) = InOMn{mn2}) This convex programming problem can be solved
in O(n*log(2!nR/€)) iterations of the ellipsoid method (see, e.g. [4]), where
each iteration requires O (n?(m + n)) arithmetic operations over log(2'nR/¢)-bit
numbers. Hence, we obtain an upper bound of ImnCMn{m.n*})) gperations with
InOmin{m.n?})_hit numbers for testing the feasibility of (1). This result can be
improved asfollows:

THEOREM 5.1. The feasibility of (1) can be tested in mnCMn{m:n®}) arithmetic
operations over [nCMn{m.n2}) it numbers.
Proof. We start with aweaker result.

LEMMA 5.2. The feasibility of (1) can be tested in (mn)OMn{mn®}) arithmetic
operations over [(mn)PMn{m.n’}h)_pit numbers,
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Proof. The sentence

m

IXesS, VAER{/\(Ai-ngi)/\
=1

Al(det(X — Al,) £0) v (A > o>]} (10)

statesthat (1) isfeasible. Sincethe characteristic polynomial det(X—\l,,) € Z[X, A]
has height 1, from Proposition 2.3 it follows that the validity of the above sentence
can be determined in (mn)© ™) operations over I(mn)°™*)-bit numbers.

Tofinishthe proof of thelemma, it remainsto show that the feasibility of (1) can
also be decided in (mn)°(™) operations with I(rmn)°(™)-bit numbers. Consider
the sentence

JReR &(R), (11)

where ®(R) is the formula defined in the proof of Theorem 3.1. This sentence
also statesthat (1) isfeasible. Observethat (11) consistsof » = O(m) polynomial
inequalitiesof degreen in O (m) variablesand hasinteger coefficientsof binary size
atmost B = n(l+log(nm) + 1). Sincedet(>-1" 1 y;A; — Al,) canbeevaluatedin
poly(rn, m) operations (or becauseall of its coefficients can be computed in (™)
operations), the lemma follows from Proposition 2.3. O

We continue with the proof of Theorem 5.1. If m is bounded by a polynomial
in n, the theorem follows from Lemma 5.2. We next show that for large m,
determining the feasibility of (1) via Clarkson’salgorithm [3] requires an expected
mnOMin{m.n2}) operations over nO(Min{m.n*}) _pit numbers.

GivenasetI C M = {1,...,m}, let

O(I) = min{0|A; - X <b;+0, i€cl,XeCg} (12)

where R = R(n,m,[) is the bound of Theorem 3.1 for the entire system (1).
With this notation, we have 8* = 0(M ). Denote by X(I) the (unique) least norm
solution of the system A; - X < b; +0(I),i € I,X € Cr,and let V(I) = {i €
MIA; - X(I) > b; +0(I)} bethe set of constraints violated by X(I). A set I is
caled abasis, if V(J) # V() for any proper subset J C I. A basis J isabasis
forI,if JCITandV(J) =V (I). Any basisfor M iscalled optimal. In particular,
if S'isan optimal basis, then

V(S) = V(M) = (), and consequently, 6(S) = (M) = 6*. (13)

From Helly’'s theorem it follows that D = max{|I| | I abasis} < n(n + 1)/2.
Given an optimal basis S, we can apply Lemma5.2toA; - X < b;,i € S, X =0
and determine the feasibility of the original system (1) in n®Mn{m.n*}) operations
over [nO(min{mn*})_pit numbers. Clarkson's algorithm finds an optimal basis by
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performing expected N = O(Dm + D3,/mTogm logm) < mpoly(n) violation
tests. Each of these checks whether j € V(I) for a sample set I of cardinality
O(D?log D) and an index j € M\I.* Note that the inclusion j € V() can be
written as the sentence

V[,j = VX,X, €S, VG,H’ € ]R{{(X,X, > O) AN S](X,g)
A[ST(X',0") = (0 < 0")]
AIST(X,8) = (IIX[1> < [IX[1%)]}
= (A; - X>b; +0)},

where S;(X, 0) is the quantifier free formula {Ajcr(A; - X < b; +6) A (|| X]|2 <
R?)}. Since the positive semidefiniteness of X can be expressed by the formula
VA € RC(X,\), where C(X,\) = {(det(X — Al,,) # 0) V (A > 0)}, it follows
that V7 ; is equivalent to:

V(X,X',0,0") € RMHDH2 300\ e RR{{C(X,\) A C(X, X)
A S1(X,0) A[Si(X',0') = (6 <6
A [S1(X',0) = (IIX]1? < [IX'[*)]} == (Aj - X > b; +0)}.

Each violation test can thus be represented by a sentence in prenex form with
r = O(|I]) < poly(n) polynomial inequalitiesof degreed = ninO(n?) variables,
Noteal so that the coefficientsof these polynomial inequalitiesareintegersof binary
length B < max{l,log R} = InMn{m:n*}) Now from Proposition 2.3 it follows
that each violation test can be accomplished in nO(Min{m:n?}) operations over
[nOmin{m.n?})_pit numbers, But the expected number of violation testsis bounded
by mpoly(n). Hence we concludethat for all » and m, testing the feasibility of (1)
requires expected mnC(Mn{m:n*}) operations over [nC(Mn{m.n*})_pit numbers.

Chazelle and Matousek [2] derandomized Clarkson’s algorithm for a wide
subclassof LP-type problems, whichincludeslinear programming and the problem
of computing the minimum volume circumscribed ellipsoid for agiven m-point set
in R". The analysis of their algorithm is based on an additional assumption which
we state here in the following stronger form: there is a constant D such that for
any subset I C M, all subsets of I violated by some (X, #) can be computed in

O(|I|)" operations. Since computing the above set system can be accomplished
by constructing the arrangement of the hyperplanesA; - X = b; + 6,7 € I (see
the argument of [2] for linear programming), we have D = O(n?). Let D =
max{D, D}. The algorithm of [2] computes an optimal basis of (8) by performing
mDO(P) operations and mpoly(D) + DOP) violation tests with subsets I of
size at most D. Since D = O(n?) and each violation test can be accomplished

* Infact, by using the arguments of Section 4 in [3], one can verify that the above bounds on the
number of violation tests and the size of sample sets are valid for computing an optimal basis for
any mapping V : 2 — 2™ that satisfies the following two conditions: (i) V (I) € M\I and (i3)
VI U{j}) =V{I)forany j € M\V(I).
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in nOMin{m.n®}) operations, we conclude that the derandomized algorithm still
requires mnO(Mn{m.n®}) operations with inO(Min{m.n®}) it numbers, O

COROLLARY 5.3. The complexity bounds of Theorem 5.1 apply to the problem
of computing an optimal basis of (8).

THEOREM 5.4. Given an optimal basis S of (8), in nOMmin{m:n*}) operations
over [nOMin{m.n?})_pit numbers we can find a system of univariate polynomial
inequalities with integer coefficients such that 6* is the only real solution of the
system. In particular, 8* isaroot of a nontrivial polynomial ~(#) € Z[6] such that
log height(h) = [nOMin{m.n?}),

Proof. Assumew.l.0.g. that the given basis .S coincides with M. In particular,
m < n(n + 1)/2. From von Neumann’'s saddlepoint theorem and (4), it follows
thatfor R >0

f* = max min {(Z yiAZ-) X — Z yibi}
i—1 i=1

yeA;, XeECr
YEAm i—1 i—1

Consider the formula
A) =Vy e A, {min [o, R\, (Z yZ-AZ-> =3 yi(bi+0) < o} ,
=1 =1

where R the bound of Theorem 3.1. Thisformula states that ¢ > 6*, and it can be
written as follows:

Yy € R™ 3AeR{<y120,...,ym20,§: yi:1>
=1
— Kdet(iyiAi—Aln> :o)
A<<§: yi(bi +0) zo) v (Rk—i yi(bi + 0) go))}}.

=1 i=1

Now the formula A*(0) = V&'{A(0) A [A(0') = (0 < ¢)]} defines#* in the
sense that #* is the only real solution of A*(#). By consecutively applying Propo-
sition2.2to A(#) and A* (), thelatter formula can be transformed into a quantifier
free formulato A**(6). This requires (mn)0m < pOMin{m.n®}) gperations with
max{l,log R} (mn)C(m < [nOMin{m.n})_pit numbers. A**(6) is composed of
univariate polynomial relations h(0)AO, where A € {<,<,=,#,>,>}. Since
0* is the only real solution of A**(#), this formula can be transformed into an
equivalent system of polynomial inequalities, which must contain a polynomial &
suchthat h(60*) = 0. O
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REMARK 5.5. Under the assumption of Theorem 5.4, 6* can be approximated to
anaccuracy of ¢ > 0innOMn{m.n*})[1og1+loglog(3+1/¢)] arithmetic operations
(see Theorem 1.2 in[8]). Note that unlike the upper bound on the operations stated
in Theorem 5.1, this bound dependson [.

REMARK 5.6. The minimal polynomial of an algebraic number « isthe primitive
irreducible polynomial p(z) € Z[x] such that p(«r) = 0 and the leading coefficient
of p(x) is positive. The height of « is the height of its minimal polynomial.
Theorem 5.4 and the well-known inequality of Mignotte (see[5], p. 261) show that
log height(6*) = [nOMin{mn?}),

Theorem 5.4 immediately implies Theorem 4.2, whose proof was postponed in
Section 4.

Proof of Theorem4.2. Supposethat system (1) isinfeasible. Then#* > 0 and by
Theorem 5.4, the positive algebraic number 8* isaroot of anontrivial polynomial
h(z) € Z]z]withinteger coefficientsof bit length [nO(M™m.n*})  Since Proposition
2.4 impliesthat 0* > 1/(1 + height(h)), the theorem follows. 0

The following result deals with the complexity of testing the feasibility of (2).

THEOREM 5.7. Thefeasibility of (2) can bedeterminedin O (mn#)-+nO(Min{m.n?})
operations over [nC(Min{m.n*})_pit numbers, where  is the maximum bit length of
the entries of Qg, Q1, ..., Q.

Proof. If m > n(n + 1)/2, we can find alinearly independent subsystem of
Qo,Q1, . .., Q. inO(mn*) operations. We can thus assumethat m < n(n+1)/2.
The feasibility of (2) can be stated as the sentence

IXKER™ VYAER{(A>0)Vdet(Qo+ 21Q1 + -+ + 2 Qm — Alp) #0)}

By Proposition 2.3, the validity of the above sentence can be decided in n©(™)
arithmetic operations with {n.°(™)-bit numbers. O

It is easy to seethat the discrepancy A* of (2) satisfies h(A*) = 0 with anontrivial
polynomial h(z) € Z[z] such that log height(h) = InCMin{m:n®}) This result and
Proposition 2.4 imply Theorem 4.3.
6. Concluding Remarks
Theorem 5.1 can be extended to the optimization version of problem (F):

of =inf{D-X|A;-X <b;,i=1,...,m, X = 0}, (14)

where D is agiven n x n integral symmetric matrix. Specifically, in addition to
testing the feasibility of (14), each of the following problems can also be solved in
mnOMin{m.n2}) operations over nO(Min{m.n*}) _pit numbers:
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Boundedness. Determine whether the objective function is bounded from
below on the set of feasible solutions.

Attainment. Determine whether the infimum is attained, that is, whether (14)
has an optimal solution.

Least NormOptimal Solution. Find systemsof univariate polynomialsdefining
o* and each component of the least norm optimal solution of (14).

REMARK 6.1. The boundedness problem readily reduces to the feasibility prob-
lem. Although the attainment problem can al so bereduced to thefeasibility problem
viathe duality result of [7], the latter reduction polynomially increases both » and
m and cannot be used in fixed dimension.

Finally, for the optimization version of (G) with agiven integral m-vector d:
B* =inf{d"x|Qo + X1Q1 + --- + ,,Q, = 0, X E€R™}, (15)

the above four problems can be solved in O (mn#) 4 nCMin{m.n*}) operations over
InOMin{m.n})_pjit numbers.

We plan to address these and some other extensions of Theorems5.1 and 5.7 in
a subsequent paper.
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