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Abstract. We show that the feasibility of a system ofm linear inequalities over the cone of symmetric

positive semidefinite matrices of order n can be tested in mnO(minfm;n2g) arithmetic operations with

lnO(minfm;n2g)-bit numbers, where l is the maximum binary size of the input coefficients. We
also show that any feasible system of dimension (m;n) has a solution X such that log kXk �
lnO(minfm;n2g).
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1. Introduction

This paper is concerned with the general semidefinite feasibility problem (F):
Given integral n� n symmetric matrices A1; . . . ;Am and integers b1; . . . ; bm,

determine whether there exists a real n� n symmetric matrix X such that

Ai � X � bi; i = 1; . . . ;m; X � 0; (1)

where A � X = tr(AX) denotes the standard inner product on the space of real
symmetric matrices and the notation (�) � 0 indicates that (�) is a symmetric
positive semidefinite matrix.

We also consider the following (polynomially equivalent) problem (G):
Given integral n� n symmetric matrices Q0;Q1; . . . ;Qm, determine whether

there are real numbers x1; . . . ; xm such that

Q0 + x1Q1 + � � �+ xmQm � 0: (2)

The complexity status of problems (F) and (G) is a fundamental open issue in the
theory of semidefinite programming. For the standard bit model of computation, it
is known [7] that either these problems belong to the complexity classNP\coNP ,
or they are not inNP [coNP . For the real number model of computation problems
(F) and (G) are known to be in NP \ coNP [7], but the question of whether they
can be solved in polynomial time remains open.
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We assume throughout the paper that n � 2, because for n = 1 the problems
are trivial. The results of this paper are as follows. In Section 3, we obtain upper
bounds on the norm of feasible solutions of (1) and (2). Specifically, we show that:

(i) Any feasible system (1) has a solution in the Euclidean ball B = fXjkXk �
Rg, where log R = lnO(minfm;n2g) and l is the maximum bitlength of the input
coefficients. Moreover, the same bound applies to (2): any feasible system (2)
has a solution x such that log kxk = lnO(minfm;n2g).

If the solution sets of (1) or (2) are bounded, then the above bounds hold for any
solution. In addition, we give examples of feasible systems (1) and (2) all of whose
solutions have Euclidean norm at least R, where logR = l2minfm;ng=2.

In Section 4, we state lower bounds on the discrepancy of infeasible systems
(1) and (2):
(ii) If (1) is infeasible, then for any symmetric positive semidefinite matrix X 2 B,

� log maxi=1;...;mfAi �X� big = lnO(minfm;n2g). The corresponding result for
an infeasible system (2) is that for any x that satisfies the upper bound of (i),
the minimum eigenvalue �n of Q0 + x1Q1 + � � � + xmQm is negative and
� log(��n) = lnO(minfm;n2g).

We also give examples of infeasible systems (1) and (2) for which the quantities
log maxi=1;...;mfAi � X � big and log(��n(Q0 + x1Q1 + � � � + xmQm)) do not
exceed �l2minfm;ng=2.

We prove the bounds of (i) and (ii) by using some results of Renegar [9]
on decision methods for the first order theory of the reals and an analogue of
the fundamental theorem of linear inequalities for positive semidefinite matrices.
These auxiliary results are briefly reviewed in Section 2.

In Section 5, we discuss the complexity of problems (F) and (G). Due to (i)
and (ii), solving (F) with the ellipsoid method requires lmnO(minfm;n2g) arithmetic
operations with lnO(minfm;n2g)-bit numbers. We use the decision method of Renegar
[9] along with the derandomized version [2] of Clarkson’s algorithm [3], [1] to
improve this result as follows:

(iii) Problem (F) can be solved in mnO(minfm;n2g) arithmetic operations over
lnO(minfm;n2g)-bit numbers.

In particular, (F) can be solved in strongly polynomial time for any fixed number
of variables or constraints. Note also that for n = const, the required number of
arithmetic operations grows linearly with m.

In Section 5 we also argue that:

(iv) Problem (G) can be solved in O(mn4) + nO(minfm;n2g) arithmetic operations
over lnO(minfm;n2g)-bit numbers.

This extends the earlier result of Ramana [6] that for any fixed m the strict
version Q0+x1Q1+ � � �+XmQm � 0 of problem (G) can be solved in polynomial
time.
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Note that in the bit model of computation, each arithmetic operation with
lnO(minfm;n2g)-bit numbers can be replaced by nO(minfm;n2g) operations with l-bit
numbers. For this reason, the bounds on the operations stated in (iii) and (iv) also
apply to l-bit numbers.

Finally, in Section 6 we briefly discuss some extensions of (iii) and (iv) to
semidefinite optimization problems.

2. Preliminaries

In this section we introduce some notation and record a few auxiliary propositions,
which are used in Sections 3 and 5.

2.1. NOTATION

Sn denotes the space of symmetric n� n real matrices. Any matrix in Sn can thus
be viewed as a vector in R

1
2n(n+1).

For a positive numberR, we denote byCR the compact setC\fXjtr(X) � Rg,
where C = fX 2 SnjX � 0g is the cone of symmetric positive semidefinite
matrices.

�1(X) � � � � � �n(X) are the (real) eigenvalues of X 2 Sn. We write X � 0 if
�n(X) > 0.

A formula (in the first-order theory of the reals) is an expression of the form

(SF ) (Q1x[1] 2 Rn1 ) . . . (Q!x[!] 2 Rn! )P (y; x[1]; . . . ; x[!]);

where:
– y = (y1; . . . ; yk) 2 Rk are free variables;
– each Qi, i = 1; . . . ; !, is one of the quantifiers 9 or 8;
– P (y; x[1]; . . . ; x[!]) is a quantifier free Boolean formula? with r “atomic pred-

icates” of the form

gi(y; x[1]; . . . ; x[!])�i0; i = 1; . . . ; r;

where �i is one of the “standard relations” >, <, �, �, =, 6=, and the gi’s are
real polynomials of degree at most d � 2.

Note that the above formula is in prenex form: all quantifiers in (SF) occur in
front. Formulas without free variables are called sentences. We say that y 2 R

k is
a solution of (SF) if the sentence obtained by substituting y into (SF) is true.

� In this paper, all formulae will be explicitly written using the standard connectives ^, _, and
=).
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2.2. AUXILIARY PROPOSITIONS

PROPOSITION 2.1 (Renegar [8]). If a formula (SF ) has only integer coefficients,
each of bit length at most B, then every connected component of the set of its
solutions intersects the ball fy 2 Rk jkyk � Rg, where R satisfies

logR � B(rd)2O(!)k
Q
i
ni :

A quantifier elimination method for the first-order theory of the reals constructs for
any input formula (SF) an equivalent quantifier free formula.

PROPOSITION 2.2 (Renegar [9]). There is an algorithm which, given a formula
(SF ), finds an equivalent quantifier free formula of the form

I_
i=1

Jî

j=1

(hij(y)�ij0);

where:
– I � (rd)2O(!)k

Q
i
ni ,

– Ji � (rd)2O(!)k
Q
i
ni ,

– the degree of hij(y) � (rd)2O(!)k
Q
i
ni ,

– �ij is one of the standard relations >, <, �, �, =, 6=.

The algorithm requires (rd)2O(!)k
Q
i
ni operations and (rd)O(k+

P
i
ni) evaluations

of the input formula. If the coefficients of the atomic polynomials gi, i = 1; . . . ; r,
are integers of bit length at most B, then the algorithm works with numbers of
binary length

(B + k)(rd)2O(!)k
Q
i
ni :

This bound also holds for the binary length of the coefficients of the polynomials
hij .

The following special case of the above result deals with the decision problem
for the first-order theory of the reals: determine whether a sentence (SF) is true or
false.

PROPOSITION 2.3 (Renegar [9]). There is an algorithm for the decision problem
of the first-order theory of the reals that requires

(rd)2O(!)k
Q
i
ni

operations and (rd)O(
P

i
ni) evaluations of the input formula. When restricted to

sentences involving only polynomials with integer coefficients of bit length at most
B, the procedure works with numbers of binary length B(rd)2O(!)k

Q
i
ni .
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The inequality below is a well-known bound on nonzero roots of univariate poly-
nomials (see, e.g. [5]).

PROPOSITION 2.4. Let p(x) = a0x
d+a1x

d�1+ � � �+ad�1x+ad be a univariate
polynomial with integer coefficients, and let � be a nonzero root of p(x). Then
j�j � 1=(1 + h), where h = maxfja0j; ja1j; . . . ; jadjg is the height of p(x).

We shall also need the following variant of the Fundamental Theorem of Linear
Inequalities (see, e.g. [11]).

PROPOSITION 2.5. Consider a system of linear inequalities

aTi x � bi; i 2M = f1; . . . ;mg;
where ai 2 Rn , i 2M , are non-zero vectors, bi 2 R, i 2M , and letK be a convex
set in Rn . If P :

= K \ fx 2 Rn j aTi x � bi, i 2Mg is not empty, then there exists a
subset I �M such that:

(a) jIj � minfm;ng;
(b) ; 6= K \ fx 2 Rn j aTi x = bi; i 2 Ig � P:

Finally, for any R � 0 we have:

minfA � XjX � 0; tr(X) = Rg = R�n(A); (3)

minfA � XjX � 0; tr(X) � Rg = minf0; R�n(A)g: (4)

To show the first of these identities, observe that

minfA � XjX � 0; tr(X) = Rg
= R�n(A) + minf(A � �n(A)In) � XjX � 0; tr(X) = Rg
= R�n(A);

where the last equality follows from the fact that A � �n(A)In is a symmetric
positive semidefinite matrix whose minimum eigenvalue is zero. To see the second
identity, note that if A � 0, then minfA � XjX � 0, tr(X) � Rg = 0. Otherwise
�n(A) < 0, which means that the minimum on the l.h.s. of (4) is negative and hence
it is attained at a matrix X such that tr(X) = R. Then (4) becomes a consequence
of (3).

3. Upper Bounds on Feasible Solutions

THEOREM 3.1.
(i) Any feasible system (1) has a solution X such that kXk � R, where logR =

lnO(minfm;n2g).
(ii) Moreover, if the feasible set of (1) is bounded, then the above bound holds for

any solution of (1).
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Proof. Suppose that system (1) is feasible, and let


R = fX 2 Cjtr(X) = Rg;

�m =

(
y 2 Rm jyi � 0; i = 1; . . . ;m;

mX
i=1

yi = 1

)
;

�(R) = min
X2
R

maxfA1 � X� b1; . . . ;Am � X� bmg:

(Recall that C is the cone of symmetric positive semidefinite matrices of order n.)
From von Neumann’s saddlepoint theorem (see, e.g., [10]) and (3), it follows that
for any R � 0

�(R) = min
X2
R

max
y2�m

mX
i=1

yi(Ai � X� bi)

= max
y2�m

min
X2
R

( 
mX
i=1

yiAi

!
� X�

mX
i=1

yibi

)

= max
y2�m

(
R�n

 
mX
i=1

yiAi

!
�

mX
i=1

yibi

)
:

Consider the formula

�(R)
:
= 8y 2 �m

(
R�n

 
mX
i=1

yiAi

!
�

mX
i=1

yibi � 0 ^R � 0

)
;

which can be written in the standard form (SF) as follows:

8y 2 Rm 9� 2 R
���

y1 � 0; . . . ; ym � 0;
mX
i=1

yi = 1
�

=)
��

det
� mX

i=1

yiAi � �In

�
= 0

�

^
�
R��

mX
i=1

yibi � 0
���

^ (R � 0)
�
:

It is easy to see that for any R 2 R, the following statements are equivalent:
� (1) has a feasible solution in 
R;
� �(R) � 0;
� R satisfies �(R).

By our original assumption, (1) is feasible, and hence there is a non-negative R
that satisfies�(R). Next,�(R) is a standard formula (SF) of degree at most d = n

with k = 1 free variable and ! = 2 quantifiers. Furthermore, �(R) consists of
r = m+ 4 = O(m) atomic polynomial inequalities in m+ 1 = O(m) variables.
Since det(

Pm
i=1 yiAi��In) containsn! products of linear forms inm+1 variables
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with integer coefficients of height at most 2l, each coefficient in �(R) has binary
length at most b = n(l + log(nm) + 1). Now from Proposition 2.1 it follows that
�(R) can be satisfied by a positive number R such that

logR = n(l + log(nm) + 1)(nm)O(m) = l(nm)O(m): (5)

By Proposition 2.5, there is a set I � M of size at most n(n+ 1)=2 such that the
system

Ai � X = bi; i 2 I; X � 0

is feasible, and any of its solutions solves the original system (1). For this reason,
we can obtain a better bound on R by replacing m with minfm;n2g. Since kXk =
(
Pn

i;j=1 X2
ij)

1=2 � tr(X), part (i) of the theorem follows.
To show part (ii), consider the formula �0(R)

:
= 8R0 2 Rf�(R0) =) (R0 �

R)g. Note that �0(R) can be written in prenex form as

8R0 2R 9y 2 Rm 8� 2 R
���

y1 � 0; . . . ; ym � 0;
mX
i=1

yi = 1
�

^
��

det
� mX

i=1

yiAi � �In

�
6= 0

�

_
�
R0��

mX
i=1

yibi > 0
���

_ (0 � R0 � R)

�
:

It is easy to see that �0(R) is satisfied if and only if

R � maxftr(X)jX feasible for (1)g:

Hence, we can apply Proposition 2.1 to �0(R) to conclude that, similarly to (5),
log R = l(nm)O(m). It remains to show that m can be replaced by minfm;n2g.
To this end, note that if the solution set of (1) is bounded, then there exists a system
Ai �X � bi; i 2 I;X � 0 with at most n(n+ 1)=2 inequalities whose solution set
is still bounded. This is because the solution set of (1) is bounded if and only if the
recessive cone of (1) is trivial, i.e.,

C \mi=1 Hi = f0g; (6)

where Hi is the halfspace fX 2 SnjAi � X � 0g. Let 
1 = fX 2 SnjX �
0; tr(X) = 1g, then (6) is equivalent to the emptiness of the intersection of the
m + 1 convex sets 
1;H1; . . . ;Hm � R

n(n+1)=2 . By Helly’s theorem (see, e.g.,
[10]) there exists a system of at most 1 + n(n + 1)=2 sets from 
1;H1; . . . ;Hm

whose intersection is still empty. Since any such system must contain
1, the claim
follows. �
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REMARK 3.2. The bounds of Theorems 3.1 apply to any mixed system of strict
and/or nonstrict inequalities

Ai � X � bi; i = 1; . . . ; k;

Ai � X < bi; i = k + 1; . . . ;m; (7)

X � 0;X �L 0;

where L is a linear subspace in Rn , and the constraint X �L 0 means that X is
positive definite onL. This fact follows from the observation that for any t 2 (0; 1)
and any solutions X1 and X2 of systems (7) and (1), respectively, the convex
combination tX1 + (1 � t)X2 satisfies (7).

THEOREM 3.3.
(i) Any feasible system (2) has a solution x 2 R

m such that log kxk =

lnO(min(m;n2)).
(ii) Moreover, if the feasible set of (2) is bounded, then the above estimate holds

for any solution of (2).
Proof. We can assume without loss of generality that the input matrices

Q1; . . . ;Qm are linearly independent, and hence m � n(n + 1)=2. Suppose that
(2) is feasible and consider the formula

	(R)
:
= 9x 2 Rmf(Q0 + x1Q1 + � � � + xmQm � 0) ^ (kxk � R)g

or equivalently,

9x 2 R
m 8� 2 Rf[(det(Q0 + x1Q1 + � � �+ xmQm � �In) 6= 0)

_ (� � 0)] ^ (xT x � R2)g:
	(R) is a standard formula with ! = 2 quantifiers in n1 = m and n2 = 1
variables, respectively, which has k = 1 free variable and consists of r = 3 atomic
polynomial inequalities of degree at most d = n, whose integer coefficients have
at most B = n(l + log(nm) + 1) bits each. Hence 	(R) can be satisfied by a
number R such that logR = lnO(m). But m � n2, which implies part (i) of the
theorem.

To show part (ii), apply the above arguments to the modified formula

	0(R)
:
= 8x 2 Rmf(Q0 + x1Q1 + � � �+ xmQm � 0) =) (kxk � R)g: �

Clearly, the bounds of Theorem 3.3 also hold for any strict and/or mixed system
(2).

We close this section with examples of ill-posed feasible systems (1) and (2).

EXAMPLE 3.4. Let n be an even number. Consider n � n symmetric positive
semidefinite matrices X satisfying the system of linear equations:

X11 = 1; X12 = 2l;

Xkk = 1; Xk;k+1 = Xk�1;k�1; for k = 3; 5; . . . ; n� 1:
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It is easy to check that this instance of (1) is feasible and log Xn;n � l2n=2 for any
of its solutions. A similar example for problem (2) is given below.

EXAMPLE 3.5. Given two matrices A 2 Sn1 and B 2 Sn2 , denote by

A� B =

�
A 0
0 B

�

their direct sum. For x = (x1; . . . ; xm) 2 Rm , let

Q1(x) =
�

1 2l

2l x1

�
and Qk(x) =

�
1 xk�1

xk�1 xk

�
; k = 2; . . . ;m:

Then Q(x) = Q1(x) � Q2(x) � � � �Qm(x) � 0 is a feasible instance of (2), any
solution of which satisfies logxm � l2m.

4. Lower Bounds on the Discrepancy

Let R = R(n;m; l) be the bound of Theorem 3.1, and let CR = fX 2 SnjX �
0; tr(X) � Rg. The discrepancy of (1) is the optimal value of the convex program-
ming problem:

�� = minf�jAi � X � bi + �; i 2M = f1; . . . ;mg; X 2 CRg: (8)

Note that because of the compactness ofCR, the minimum in (8) is always attained,
and �� � 0 if and only if system (1) is feasible.

REMARK 4.1. There exist infeasible systems (1) such that inff�jAi � X � bi +
�; i 2M;X � 0g = 0. For instance, this is true for the system of linear inequalities
X11 � 0, X12 � �1, where X = (Xij) is a symmetric positive semidefinite matrix
of order 2.

THEOREM 4.2. If (1) is infeasible, then � log �� = lnO(minfm;n2g).

Although Theorem 4.2 can be proved analogously to Theorem 3.1, it is convenient
to postpone its proof until Section 5.

Now we consider systems (2). Let R = R(n;m; l) be the bound of Theorem
3.3, and let UR = fx 2 R

m jkxk � Rg be the m-dimensional ball of radius R
centered at the origin. The discrepancy of (2) is the optimal value of the concave
program:

�� = maxf�n(Q0 + x1Q1 + � � �+ xmQm)jx = (x1; . . . ; xm) 2 URg: (9)

Clearly, (2) is feasible if and only if �� � 0.

THEOREM 4.3. If (2) is infeasible, then � log(���) = lnO(minfm;n2g).
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The proof of this theorem is also postponed until Section 5. We close this section
with examples of infeasible systems (1) and (2) whose discrepancies are doubly
exponentially small.

EXAMPLE 4.4. Letn be even, and considern�n symmetric positive semidefinite
matrices X satisfying the equations:

X11 � 2lX12 = 0; X22 � 2lX34 = 0;

Xkk � X12 = 0; for k = 3; 5; . . . ; n� 3;

Xkk � Xk+1;k+2 = 0; for k = 4; 6; . . . ; n� 4;

Xn�2;n�2 + Xn�1;n�1 = 0; Xnn � X12 = �1:

It is easy to check that this instance of (1) is infeasible and � log �� � l2n=2.

EXAMPLE 4.5. For x = (x1; . . . ; xm) 2 Rm , let

Q1(x) =
�

2lx1 x1

x1 2lx2

�
; Qm(x) =

��xm 0
0 x1 � 1

�
;

and

Qk(x) =
�
x1 xk
xk xk+1

�
; k = 2; . . . ;m� 1:

Then Q(x) = Q1(x)�Q2(x)� � � �Qm(x) � 0 is an infeasible instance of (2), and
it can be verified that � log(���) � l2m�1.

5. Complexity Bounds

By Theorems 3.1 and 4.2, the feasibility of (1) can be determined by comput-
ing the optimal value �� of program (8) to an absolute accuracy of �, where
log(1=�) = lnO(minfm;n2g). This convex programming problem can be solved
in O(n4 log(2lnR=�)) iterations of the ellipsoid method (see, e.g. [4]), where
each iteration requires O(n2(m+ n)) arithmetic operations over log(2lnR=�)-bit
numbers. Hence, we obtain an upper bound of lmnO(minfm;n2g) operations with
lnO(minfm;n2g)-bit numbers for testing the feasibility of (1). This result can be
improved as follows:

THEOREM 5.1. The feasibility of (1) can be tested in mnO(minfm;n2g) arithmetic
operations over lnO(minfm;n2g)-bit numbers.

Proof. We start with a weaker result.

LEMMA 5.2. The feasibility of (1) can be tested in (mn)O(minfm;n2g) arithmetic
operations over l(mn)O(minfm;n2g)-bit numbers.
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Proof. The sentence

9X 2 Sn 8� 2 R
� m̂

i=1

(Ai � X � bi) ^

^[(det(X � �In) 6= 0) _ (� � 0)]
�

(10)

states that (1) is feasible. Since the characteristic polynomial det(X��In) 2 Z[X; �]
has height 1, from Proposition 2.3 it follows that the validity of the above sentence
can be determined in (mn)O(n

2) operations over l(mn)O(n
2)-bit numbers.

To finish the proof of the lemma, it remains to show that the feasibility of (1) can
also be decided in (mn)O(m) operations with l(mn)O(m)-bit numbers. Consider
the sentence

9R 2 R �(R); (11)

where �(R) is the formula defined in the proof of Theorem 3.1. This sentence
also states that (1) is feasible. Observe that (11) consists of r = O(m) polynomial
inequalities of degreen inO(m) variables and has integer coefficients of binary size
at most B = n(l+ log(nm)+1). Since det(

Pm
i=1 yiAi��In) can be evaluated in

poly(n;m) operations (or because all of its coefficients can be computed in nO(m)

operations), the lemma follows from Proposition 2.3. �

We continue with the proof of Theorem 5.1. If m is bounded by a polynomial
in n, the theorem follows from Lemma 5.2. We next show that for large m,
determining the feasibility of (1) via Clarkson’s algorithm [3] requires an expected
mnO(minfm;n2g) operations over lnO(minfm;n2g)-bit numbers.

Given a set I �M = f1; . . . ;mg, let

�(I) = minf�jAi � X � bi + �; i 2 I; X 2 CRg; (12)

where R = R(n;m; l) is the bound of Theorem 3.1 for the entire system (1).
With this notation, we have �� = �(M). Denote by X(I) the (unique) least norm
solution of the system Ai � X � bi + �(I), i 2 I;X 2 CR, and let V (I) = fi 2
M jAi � X(I) > bi + �(I)g be the set of constraints violated by X(I). A set I is
called a basis, if V (J) 6= V (I) for any proper subset J � I . A basis J is a basis
for I , if J � I and V (J) = V (I). Any basis for M is called optimal. In particular,
if S is an optimal basis, then

V (S) = V (M) = ;; and consequently, �(S) = �(M) = ��: (13)

From Helly’s theorem it follows that D :
= maxfjIj j I a basisg � n(n + 1)=2.

Given an optimal basis S, we can apply Lemma 5.2 to Ai � X � bi; i 2 S;X � 0
and determine the feasibility of the original system (1) in nO(minfm;n2g) operations
over lnO(minfm;n2g)-bit numbers. Clarkson’s algorithm finds an optimal basis by
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performing expected N = O(Dm+D3pm logm logm) � mpoly(n) violation
tests. Each of these checks whether j 2 V (I) for a sample set I of cardinality
O(D2 logD) and an index j 2 MnI .? Note that the inclusion j 2 V (I) can be
written as the sentence

VI;j
:
= 8X;X0 2 Sn 8�; �0 2 Rff(X;X0 � 0) ^ SI(X; �)
^[SI(X0; �0) =) (� � �0)]

^[SI(X0; �) =) (kXk2 � kX0k2)]g
=) (Aj � X > bj + �)g;

where SI(X; �) is the quantifier free formula f^i2I(Ai � X � bi + �) ^ (kXk2 �
R2)g. Since the positive semidefiniteness of X can be expressed by the formula
8� 2 R C(X; �), where C(X; �) :

= f(det(X � �In) 6= 0) _ (� � 0)g, it follows
that VI;j is equivalent to:

8(X;X0; �; �0) 2 R
n(n+1)+2 9(�; �0) 2 R2ffC(X; �) ^ C(X0; �0)

^ SI(X; �) ^ [SI(X0; �0) =) (� � �0)]

^ [SI(X0; �) =) (kXk2 � kX0k2)]g =) (Aj � X > bj + �)g:
Each violation test can thus be represented by a sentence in prenex form with

r = O(jIj) � poly(n) polynomial inequalities of degree d = n inO(n2) variables.
Note also that the coefficients of these polynomial inequalities are integers of binary
length B � maxfl; logRg = lnO(minfm;n2g). Now from Proposition 2.3 it follows
that each violation test can be accomplished in nO(minfm;n2g) operations over
lnO(minfm;n2g)-bit numbers. But the expected number of violation tests is bounded
by mpoly(n). Hence we conclude that for all n and m, testing the feasibility of (1)
requires expected mnO(minfm;n2g) operations over lnO(minfm;n2g)-bit numbers.

Chazelle and Matousek [2] derandomized Clarkson’s algorithm for a wide
subclass of LP-type problems, which includes linear programming and the problem
of computing the minimum volume circumscribed ellipsoid for a givenm-point set
in Rn . The analysis of their algorithm is based on an additional assumption which
we state here in the following stronger form: there is a constant ~D such that for
any subset I � M , all subsets of I violated by some (X; �) can be computed in
O(jIj) ~D operations. Since computing the above set system can be accomplished
by constructing the arrangement of the hyperplanes Ai � X = bi + �; i 2 I (see
the argument of [2] for linear programming), we have ~D = O(n2). Let D =
maxfD; ~Dg. The algorithm of [2] computes an optimal basis of (8) by performing
mDO(D) operations and mpoly(D) + DO(D) violation tests with subsets I of
size at most D. Since D = O(n2) and each violation test can be accomplished

� In fact, by using the arguments of Section 4 in [3], one can verify that the above bounds on the
number of violation tests and the size of sample sets are valid for computing an optimal basis for
any mapping V : 2M ! 2M that satisfies the following two conditions: (i) V (I) � MnI and (ii)
V (I [ fjg) = V (I) for any j 2MnV (I).
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in nO(minfm;n2g) operations, we conclude that the derandomized algorithm still
requires mnO(minfm;n2g) operations with lnO(minfm;n2g)-bit numbers. �

COROLLARY 5.3. The complexity bounds of Theorem 5.1 apply to the problem
of computing an optimal basis of (8).

THEOREM 5.4. Given an optimal basis S of (8), in nO(minfm;n2g) operations
over lnO(minfm;n2g)-bit numbers we can find a system of univariate polynomial
inequalities with integer coefficients such that �� is the only real solution of the
system. In particular, �� is a root of a nontrivial polynomial h(�) 2 Z[�] such that
log height(h) = lnO(minfm;n2g).

Proof. Assume w.l.o.g. that the given basis S coincides with M . In particular,
m � n(n + 1)=2. From von Neumann’s saddlepoint theorem and (4), it follows
that for R � 0

�� = max
y2�m

min
X2CR

( 
mX
i=1

yiAi

!
� X�

mX
i=1

yibi

)

= max
y2�m

(
min

"
0; R�n

 
mX
i=1

yiAi

!#
�

mX
i=1

yibi

)
:

Consider the formula

�(�)
:
= 8y 2 �m

(
min

"
0; R�n

 
mX
i=1

yiAi

!#
�

mX
i=1

yi(bi + �) � 0

)
;

where R the bound of Theorem 3.1. This formula states that � � ��, and it can be
written as follows:

8y 2 Rm 9� 2 R
��

y1 � 0; . . . ; ym � 0;
mX
i=1

yi = 1
�

=)
��

det
� mX

i=1

yiAi � �In

�
= 0

�

^
�� mX

i=1

yi(bi + �) � 0
�
_
�
R��

mX
i=1

yi(bi + �) � 0
����

:

Now the formula ��(�) :
= 8�0f�(�) ^ [�(�0) =) (� � �0)]g defines �� in the

sense that �� is the only real solution of ��(�). By consecutively applying Propo-
sition 2.2 to �(�) and��(�), the latter formula can be transformed into a quantifier
free formula to ���(�). This requires (mn)O(m) � nO(minfm;n2g) operations with
maxfl; logRg(mn)O(m) � lnO(minfm;n2g)-bit numbers. ���(�) is composed of
univariate polynomial relations h(�)�0, where � 2 f�; <;=; 6=; >;�g. Since
�� is the only real solution of ���(�), this formula can be transformed into an
equivalent system of polynomial inequalities, which must contain a polynomial h
such that h(��) = 0. �
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REMARK 5.5. Under the assumption of Theorem 5.4, �� can be approximated to
an accuracy of " > 0 innO(minfm;n2g)[log l+log log(3+1=")] arithmetic operations
(see Theorem 1.2 in [8]). Note that unlike the upper bound on the operations stated
in Theorem 5.1, this bound depends on l.

REMARK 5.6. The minimal polynomial of an algebraic number � is the primitive
irreducible polynomial p(x) 2 Z[x] such that p(�) = 0 and the leading coefficient
of p(x) is positive. The height of � is the height of its minimal polynomial.
Theorem 5.4 and the well-known inequality of Mignotte (see [5], p. 261) show that
log height(��) = lnO(minfm;n2g).

Theorem 5.4 immediately implies Theorem 4.2, whose proof was postponed in
Section 4.

Proof of Theorem 4.2. Suppose that system (1) is infeasible. Then �� > 0 and by
Theorem 5.4, the positive algebraic number �� is a root of a nontrivial polynomial
h(x) 2 Z[x]with integer coefficients of bit length lnO(minfm;n2g). Since Proposition
2.4 implies that �� � 1=(1 + height(h)), the theorem follows. �

The following result deals with the complexity of testing the feasibility of (2).

THEOREM 5.7. The feasibility of (2) can be determined inO(mn4)+nO(minfm;n2g)

operations over lnO(minfm;n2g)-bit numbers, where l is the maximum bit length of
the entries of Q0;Q1; . . . ;Qm.

Proof. If m > n(n + 1)=2, we can find a linearly independent subsystem of
Q0;Q1; . . . ;Qm in O(mn4) operations. We can thus assume thatm � n(n+1)=2.
The feasibility of (2) can be stated as the sentence

9x 2 Rm 8� 2 Rf(� � 0) _ det(Q0 + x1Q1 + � � �+ xmQm � �In) 6= 0)g
By Proposition 2.3, the validity of the above sentence can be decided in nO(m)

arithmetic operations with lnO(m)-bit numbers. �

It is easy to see that the discrepancy �� of (2) satisfies h(��) = 0 with a nontrivial
polynomial h(x) 2 Z[x] such that log height(h) = lnO(minfm;n2g). This result and
Proposition 2.4 imply Theorem 4.3.

6. Concluding Remarks

Theorem 5.1 can be extended to the optimization version of problem (F):

�� = inffD � XjAi � X � bi; i = 1; . . . ;m; X � 0g; (14)

where D is a given n � n integral symmetric matrix. Specifically, in addition to
testing the feasibility of (14), each of the following problems can also be solved in
mnO(minfm;n2g) operations over lnO(minfm;n2g)-bit numbers:
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Boundedness. Determine whether the objective function is bounded from
below on the set of feasible solutions.

Attainment. Determine whether the infimum is attained, that is, whether (14)
has an optimal solution.

Least Norm Optimal Solution. Find systems of univariate polynomials defining
�� and each component of the least norm optimal solution of (14).

REMARK 6.1. The boundedness problem readily reduces to the feasibility prob-
lem. Although the attainment problem can also be reduced to the feasibility problem
via the duality result of [7], the latter reduction polynomially increases both n and
m and cannot be used in fixed dimension.

Finally, for the optimization version of (G) with a given integral m-vector d:

�� = inffdT xjQ0 +X1Q1 + � � �+ xmQm � 0; x 2 Rmg; (15)

the above four problems can be solved in O(mn4)+nO(minfm;n2g) operations over
lnO(minfm;n2g)-bit numbers.

We plan to address these and some other extensions of Theorems 5.1 and 5.7 in
a subsequent paper.
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